Normal Helly circular-arc graphs and its subclasses
نویسندگان
چکیده
A Helly circular-arc modelM = (C,A) is a circle C together with a Helly family A of arcs of C. If no arc is contained in any other, thenM is a proper Helly circular-arc model, if every arc has the same length, then M is a unit Helly circular-arc model, and if there are no two arcs covering the circle, thenM is a normal Helly circular-arc model. A Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc graph is the intersection graph of the arcs of a Helly (resp. proper Helly, unit Helly, normal Helly) circular-arc model. In this article we study these subclasses of Helly circular-arc graphs. We show natural generalizations of several properties of (proper) interval graphs that hold for some of these Helly circular-arc subclasses. Next, we describe characterizations for the subclasses of Helly circular-arc graphs, including forbidden induced subgraphs characterizations. These characterizations lead to efficient algorithms for recognizing graphs within these classes. Finally, we show how do these classes of graphs relate with straight and round digraphs.
منابع مشابه
On some subclasses of circular-arc graphs
The intersection graph of a family of arcs on a circle is called a circular-arc graph. This class of graphs admits some interesting subclasses: proper circular-arc graphs, unit circular-arc graphs, Helly circular-arc graphs and clique-Helly circular-arc graphs. In this paper, all possible intersections of these subclasses are studied. There are thirteen regions. Twelve of these are nonempty, an...
متن کاملThe intersection between some subclasses of circular-arc and circle graphs
The intersection graph of a family of arcs on a circle is called a circular-arc graph. This class of graphs admits some interesting subclasses: proper circular-arc graphs, unit circular-arc graphs, Helly circular-arc graphs and clique-Helly circular-arc graphs. The intersection graph of a family of chords in a circle is called a circle graph. Analogously, this class of graphs admits some subcla...
متن کاملProper Helly Circular-Arc Graphs
A circular-arc model M = (C,A) is a circle C together with a collection A of arcs of C. If no arc is contained in any other then M is a proper circular-arc model, if every arc has the same length then M is a unit circular-arc model and if A satisfies the Helly Property then M is a Helly circular-arc model. A (proper) (unit) (Helly) circular-arc graph is the intersection graph of the arcs of a (...
متن کاملCharacterizations and Linear Time Recognition of Helly Circular-Arc Graphs
A circular-arc model (C,A) is a circle C together with a collection A of arcs of C. If A satisfies the Helly Property then (C,A) is a Helly circular-arc model. A (Helly) circular-arc graph is the intersection graph of a (Helly) circular-arc model. Circular-arc graphs and their subclasses have been the object of a great deal of attention, in the literature. Linear time recognition algorithm have...
متن کاملClique graphs of Helly circular arc graphs
Abstract: Clique graphs of several classes of graphs have been already characterized. Trees, interval graphs, chordal graphs, block graphs, clique-Helly graphs are some of them. However, no characterization of clique graphs of circular-arc graphs and some of their subclasses is known. In this paper, we present a characterization theorem of clique graphs of Helly circular-arc graphs and prove th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 161 شماره
صفحات -
تاریخ انتشار 2013